Design of walls and floors for good sound insulation

Measurement of Sound Insulation

The measurement is made in a laboratory by constructing a wall between two specially isolated rooms. By isolating the rooms, sound only travels between the rooms via the test panel.

Measurement and Calculation

- We measure the sound pressure on both sides of the wall, in 16 frequency bands between 100Hz and 3150 Hz.
- The results are plotted on a graph and a reference curve adjusted until the number of points below the graph is just less than 32 dB
- The value of the reference curve at 500 Hz is the weighted sound reduction index (Rw)

Calculation of Rw

(single number rating)

Engineering prediction methods

For single panels R is simply related to surface mass - *m*

surface mass - m (kg/m2)

Relation between surface mass and R

Mass Law (single panel)

$$R = 20\log(mf) - 47$$

 \mathcal{M} is the surface mass (kg/m2)

f is the frequency (Hz)

Mass Law (effect of mass)

R increases by 6 dB per doubling of surface mass

Mass Law (effect of frequency)

Bending Waves

•At low frequencies $\lambda_{b} > \lambda_{x}$ (sound radiation inefficient)

•At critical frequency $\lambda_{\rm b} = \lambda_{\rm x}$ (sound radiation efficient)

•At critical frequency the wavelength of the wave in the wall matches or coincides with the wavelength of the wave in the air.

Wave length in Plate and in Air

Mass Law(including bending waves)

Resonant transmission $R = 20\log(mf) - 10\log(2\eta f / \pi f_c) - 47$

 $\eta~$ - is the damping coefficient

$$f_c$$
 - is the critical frequency

$$f_c m$$
 - is a constant for each material

Effect of Bending Waves (12 mm Glass) **Resonant Transmission** Sound Transmission Loss [dB] Forced Transmission **Critical frequency** frequency [Hz]

Effect of thickness

Effect of damping

Laminated glass reduces the critical frequency dip

Glass Glass

Orthotropic Panels

Thin metal panels are often rolled into trapezoidal profiles to increase the stiffness and hence spanning capacity

This is detrimental to their sound insulation because it lowers the critical frequency

Orthotropic Panels

Foam Core Panels

•Thin metal skins with foam plastic core

Sound Insulation Properties

Double Panel Wall

•Two panels separated by an air gap

Double Panel prediction methods Ideal Double Panels (London, Sharp)

$$R = 20\log(f(m_1 + m_2)) - 47 \qquad f < f_0$$

$$R = R_1 + R_2 + 20\log(fd) - 29 \qquad f_0 < f < f_1$$

 $R = R_1 + R_2 + 6 \qquad \qquad f > f_l$

fo is the mass-air-mass resonance

fl is the knee frequency and is equal to (55/d) Hz

Double wall behaviour

Mass-air-mass resonance

$$f_0 = \frac{1}{2\pi} \sqrt{\frac{\rho c^2}{d} \left(\frac{1}{m_1} + \frac{1}{m_2}\right)}$$

Effect of Cavity Absorption

Flow resistivity

- Flow resistivity is a good predictor of acoustic absorption performance, the higher resistivity the better.
- Different types of absorber with same flow resistivity will have same acoustic performance

Effect of Flow resistivity (fibreglass)

P		•
ŀ	X	•
Ŀ	1 X	·

cavity infill 90mm 12kg/m3 (=4000 Rayl/m) STC 56

cavity infill 90mm 16kg/m3 (=8000 Rayl/m) STC 58

cavity infill 2x90mm 12kg/m3 (=4000 Rayl/m) STC 59

cavity infill 2x90mm 16kg/m3 (=8000 Rayl/m) STC 61

Effect of Connections

Methods of isolating wall linings

Resilient Sound Isolation Clip

Quietzone Acoustic Framing

Resilient fastenings of Linings

Comparison of single and double wall

	Description	Thickness (mm)	Mass (kg)	Rw (dB)
20 m	2x16mm plasterboard on 2x100x50 studs	290	68 kg/m2	71
400mm	400mm Solid concrete	400	900kg/m2	70

Triple Panel Constructions

•Three panels separated by two air gaps

Lumped Parameter Model

Lumped Parameter Model

*f*₀ = 73, 263 Hz

Resonant Frequencies

$$f_1 = 64 \text{ Hz}$$

f₁ = 53, 92 Hz

Comparison of Model to Measurements

Masonry with attached lining

- A 150mm thick concrete wall which by itself will be Rw 50 can be less than Rw 50 if light gypsum board linings are fixed on both sides.
- The dip at the mass-airmass resonance can reduce the Rw rating

Sound transmission loss for a 190-mm concrete block wall with 16-mm gypsum board attached on 13-mm resilient metal channels to one side and to both sides of the wall with sound-absorbing material in the cavity.

Comparison of double and triple wall

	Description	Thickness (mm)	Mass (kg)	Rw (dB)
20 m	2x16mm plasterboard on 2x100x50 studs	290	68 kg/m2	71
	2x10mm plasterboard on 100x50 studs	290	68kg/m2	69

Comparison of single double and triple panel walls

Cavity Walls

Sound Insulation Requirements (Residential)

Category	Airborne Insulation
High quality Apartments	Rw 65
Mid quality Apartments	Rw 60
Code Compliance Minimum performance	Rw 55

Sound Insulation Requirements (Education)

	Library /Study Room	Class- room	Multi- purpose Hall	Technology Room	Technology Room	Gymn- asium	Music Room
Technology Room	60	60	60	55	55	55	60
Gymnasium	60	60	60	55	55	55	60
Classroom	50	50	60	50	60	60	60
Multi-purpose Hall	60	60	60	55	60	60	60
Library/Study Room	45	50	60	50	60	60	60
Music Room	60	60	60	60	60	60	60

Sound Insulation Requirements (TV and Radio)

	NK20	Music/Multipurpose Studio	T0	
	NR15	Drama Studio	55 70	
1	NR15	Talks/Continuity/News Studio	50 85 50	
	NR20	'Pop' Music Recording Studio	80 50 60 50	
adi	NR20	Studio Control (same prog. adjacent)		
	NR20	Studio Control (other progs. adjacent)	45 40 75 55 70 70	Re
	NR 30	Apparatus/Equipment Room	20 55 75 65 55	
	NR20	Quality Check/Listening Room	Z50X55XX75XXX64	0/10/
1	NR20	Dubbing Theatre/'Voice Over'/Narrator	55×50×55×	0 75 65
	NR20	General Purpose TV Studio	65×55×30~	0 65 75 60
	NR20	News/'Speech Only' TV Studio	250 45 50 55 50 6	5 70 60 60 80
	NR20	TV Production/Vision/Lighting Control	20 50 50 60 70 45	
	NR20	TV Sound Control (Same prog. adjacent)		
Ì	NR20	All TV Controls (other progs. adjacent	55 60 70 65 70 60 5	5300
	-	Scenery Dock/Construction		600
1	-	Building Exterior (via roof)		×
	-	Building Exterior (via walls)	ZX+*X50XX80	91
	-	Mechanical Equipment/A.C. Plant Room		3 FB
	-	Kitchen/Restaurant/Toilets/Corridor	<	
	NR35	Office/Rest Area/Artistes Assembly	40 50	
	-	Garage/Covered Access Road	255	

Impact Sound

Measuring Impact Sound

Receiver Room

Australian Requirements

Conclusions

- Good sound insulation is very important in buildings
- Criteria can be established for each room in a building based on user comfort
- Walls and floors can be designed with simple engineering models to meet criteria
- Understanding the basic principles of sound transmission helps prevent bad buildings

